
Linear data structures (1)

In linear data structures the elements (integers, pointers, structs, etc.) are ordered – i.e. we

may say, which member is the first, which is the seconds, etc. The simplest ordered linear

data structure is array.

Problems with array:

1. If we need to insert a new element, we must at

first check, is there at the end of array some free

space. If not, we have to reallocate our memory

field. Often it is accompanied with relocating of

large amounts of data. After that we need to free

the position for the new element: i.e. once more

shift data.

2. If we need to remove an element, we must shift

data to left to cover the position. One position at

the end of array becomes unused. There is an

alternative solution: do not shift but somehow

mark that the position as empty (for example fill

with zeroes).

Linear data structures (2)

Let us have:

struct date

{

 short int Day = 0;

 char Month[4] = { }; // like "Jan", "Feb", etc.

 short int Year = 0;

};

typedef struct date DATE;

struct person

{

 char *pName = nullptr,

 *pAddress = nullptr;

 long int Code = 0;

 DATE Birthdate;

 person *pNext = nullptr;

};

typedef struct person PERSON;

Linear data structures (3)

With pointer pNext we create linked list:

PERSON *pList; // points to the first element

Pointer pNext of the first element points to the second element, pointer pNext of the second

element points to the third element, etc. Pointer pNext of the last element is zero.

The linked list does not need a long compact memory field. The elements may be in the

heap higgledy-piggledy, without any order. But due to the pointers the data structure itself

is ordered.

Linear data structures (4)

Inserting a new element and removing an

existing element is much more effective than

those operations with arrays. We do not need

to shift large amounts of data and all the

elements of list keep their current location.

The only task we need to perform is to reset

the pNext pointers.

The disadvantage of linked list is that we

cannot use indeces. To access the i-th element

we have to move from the first element (this

is the only element we can access directly) to

second, from the second to the third, etc. In an

array we need just write like *(pArray +i) or

Array[i].

In data processing linked lists are the most used type of linear data structures. Arrays are

used only when the amount of data is not large and the expected max number of data is

well known. If the number of elements is unpredictable and continually changing, the

linked lists have no alternatives.

Linear data structures (5)

Example: iteration through linked list

PERSON *GetPerson(PERSON *pList, int iPos)

{ // we want to get the pointer to item on position iPos

 if (!pList || iPos < 0) // check input

 return nullptr; // errors

 PERSON *p; // auxiliary variable

 int i; // auxiliary variable

 for (i = 0, p = pList;

 p && i < iPos;

 p = p->pNext, i++);

 return p;

}

Linear data structures (6)
Suppose iPos is 2, i.e. we want to get the pointer to third item.

Loop starts: p = pList, i = 0;

p points to the first item.

As p is not zero and i < 2, looping continues. p->pNext is the address of second item.

p = p->pNext, i++; After that p points to the second item and i is 1.

As p is not zero and i < 2, looping continues. p->pNext is the address of third item.

p = p->pNext, i++; After that p points to the third item and i is 2.

As i is now 2, the looping breaks off and we may return p as the searching result.

Linear data structures (7)

Example: iteration through linked list

PERSON *GetPerson(PERSON *pList, char *pKey)

{ // we want to get the pointer to person with name specified by the key

 if (!pList || !pKey) // check input

 return nullptr;

 PERSON *p; // auxiliary variable

 for (p = pList; p && strcmp(pKey, p->pName); p = p->pNext);

 // strcmp() compares two strings. If they are identical, the return value is 0.

 // The iteration stops when p points to item with name identical with key or when

 // p is zero (i.e. the item we need does not exist)

 return p;

}

A key is something (string, integer, etc.) that we can directly or after some calculations

retrieve from the record. Requirements: there must be algorithms with which we can assert

that:

• two keys are equal

• if they are not equal, which of them is less

Linear data structures (8)

Example: insert into linked list

PERSON *Insert(PERSON *pList, PERSON *pNew, int iPos)

{ // we want to insert a new item into position iPos.

 // the function returns the pointer to first item

 if (!pNew || iPos < 0) // error in input

 return pList;

 if (!iPos)

 { // insert to the beginning, the new item will be the first one

 pNew->pNext = pList;

 return pNew;

 }

 PERSON *p; // auxiliary variable

 if (p = GetPerson(pList, iPos - 1))

 { // insert into the middle or to the end

 pNew->pNext = p->pNext;

 p->pNext = pNew;

 }

 return pList;

}

Linear data structures (9)

if (!iPos)

{ // insert to the beginning, the new item will be the first one

 pNew->pNext = pList; // 4

 return pNew; // 5

 }

On start pList points to the first item. As iPos is zero, the previous first item must be

reduced to the second position. So the pNext member of the new item must point to the

former first item (operation 4). The return value is the pointer to the new first item

(operation 5).

Linear data structures (10)

if (p = GetPerson(pList, iPos - 1))// 1

{

 pNew->pNext = p->pNext; // 2

 p->pNext = pNew; // 3

 }

 return pList; // keeps its value

}

We want to insert the new item into position iPos. Consequently the item on position iPos – 1

must start to point to the new item. Therefore the first thing to do is to find the pointer to item

on position iPos -1. For that we may use function GetPerson() from slide Linear data

structures (5) (operation 1). If iPos is wrong (negative or too large), GetPerson() returns 0

and the inserting will be omitted. If the item on position iPos - 1 was found, we correct its

pNext member (operation 3) and set the new item to point to item that was on position iPos

and now is reduced to position iPos +1 (operation 2).

Linear data structures (11)
Example: remove from linked list

PERSON *Remove(PERSON *pList, int iPos, PERSON **ppResult)

{ // we want to remove the item on position iPos

 // the removed item is not destroyed: the pointer to it is the output value

 // the function returns the pointer to first item

 if (!pList || iPos < 0 || !ppResult)

 return pList; // list is empty or errors in input data

 *ppResult = nullptr;

 PERSON *p; // auxiliary variable

 if (!iPos)

 { // remove the first

 *ppResult = pList;

 pList = pList->pNext;

 }

 else if (p = GetPerson(pList, iPos - 1))

 { // remove from the middle or from the end

 *ppResult = p->pNext;

 p->pNext = p->pNext->pNext;

 }

 return pList;

}

Linear data structures (12)

Usage example: we have linked list

PERSON *pStudentsGroup;

Remove the first and fourth students and print their names.

PERSON *pFirst, *pFourth;

pStudentGroup = Remove(pStudentGroup, 0, &pFirst);

if (pFirst)

{

 printf("Student %s was removed from list\n", pFirst->pName);

}

pStudentGroup = Remove(pStudentGroup, 4, &pFourth);

if (pFourth)

{

 printf("Student %s was removed from list\n", pFourth->pName);

}

On the last call to

PERSON *Remove(PERSON *pList, int iPos, PERSON **ppResult) { …… }

• the value of pStudentsGroup is copied into pList

• iPos gets value 4

• the pointer to pFourth (which itself is also a pointer) is calculated and copied into

ppResult. In other words, ppResult will point to pFourth

Linear data structures (13)

if (!iPos)

{ // remove the first

 *ppResult = pList; // 4

 pList = pList->pNext; // 5

}

The second item is now the first and pList must point to it (operation 5). To pointer pFirst

(variable of the calling function and not the variable of Remove()) is assigned the pointer to

the former first item (operation 4).

Linear data structures (14)

else if (p = GetPerson(pList, iPos - 1)) // 1

{

 *ppResult = p->pNext; // 2

 p->pNext = p->pNext->pNext; // 3

 }

 return pList;

}

We want to remove the item on position iPos. Consequently the item on position iPos – 1

must start to point to the item that is on position iPos + 1. Therefore the first thing to do is

to find the pointer to item on position iPos -1. For that we may use function GetPerson()

from slide Linear data structures (5) (operation 1). If iPos is wrong (negative or too large),

GetPerson() returns 0 and the removing will be omitted. If the item on position iPos - 1 was

found, we correct its pNext member (operation 3). To pointer pFourth (variable of the

calling function and not the variable of Remove()) is assigned the pointer to item that was

on position iPos (operation 2).

Linear data structures (15)

struct person

{

 char *pName = nullptr,

 *pAddress = nullptr;

 long int Code = 0;

 DATE Birthdate;

 struct Person *pNext = nullptr,

 *pPrior = nullptr;

};

In double linked list we can move to both directions.

Pointer pPrior in the first element is 0.

In circularly linked list the "last" element points to the "first" (terms "first" and "last" are

conditional here).

Linear data structures (16)

If the new elements must be always appended (and not inserted into the middle of list), it

is useful to have 2 outside pointers: one to the first and one to the last element.

struct Header

{

 void *pRecord = nullptr;

 int type = 0;

 struct Header *pNext = nullptr;

};

The separate headers are needed when the structs in data structure do not have pNext pointers

or are of different types.

Linear data structures (17)

struct Header

{

 void *pRecord = nullptr;

 int type = 0;

};

This solution is very suitable but only if we are able the estimate the number of elements

and thus allocate the vector with proper length. When deleting, instead of compressing

simply replace the pointer with 0. When sorting, the structs are not moved because we

may simply rearrange the pointers.

Serialization

char *Serialize(PERSON *p) { // on disk memory addresses are senseless

 short int n1 = strlen(p->pName) +1, n2 = strlen(p->pAddress) + 1, n = n1 + n2;

 char *pSer, *r;

 pSer = new char [(n += sizeof(PERSON) + sizeof(int) – sizeof(PERSON *) -

 2 * sizeof(char *)];

memcpy(r=pSer,&n,sizeof(int)); //1

 memcpy(r+=sizeof(int),p->pName,n1); //2

memcpy(r+=n1,p->pAddress,n2); //3

 memcpy(r+=n2,&p->Code,sizeof(long int)); //4

 memcpy(r+sizeof(long int),&p->Birthdate.day, sizeof(DATE)); //5

 return pSer; // serialized compact struct ready for writing to disk

}

Stack (1)
A stack or LIFO ("last in first out") is a list in which the insertions and deletions can be

perfomed in only one fixed position, called the top. In implementations the top may be the

first or the last element of list. In other words, the inserted record will be always on the top

(operation push) and only the record on top (actually the most recently inserted record) can

be removed (operation pop).

struct stack

{

 void *pRecord = nullptr;

 stack *pNext = nullptr;

};

stack *push(stack *pStack, void *pRecord)

{

 if (!pRecord)

 {

 throw invalid_argument ("No record to push");

 }

 stack *pNew = new stack;

 pNew->pRecord = pRecord;

 pNew->pNext = pStack;

 return *pNew;

}

Stack (2)

stack *pop(stack *pStack, void **pResult)

{

 if (!pStack)

 { // empty stack

 pResult = nullptr;

 return pStack;

 }

 *pResult = pStack->record;

 stack *p = pStack->pNext;

 delete pStack;

 return p;

}

Usage:

void *pv:

stack *pMyStack;

pMyStack = pop(pMyStack, &pv);

cout << ((PERSON *)pv)->pName << endl;

Queue
A queue or FIFO ("first in first out") is a list in which the insertions can be perfomed

in only one fixed position, called the rear or tail. The deletions can be performed only

on another fixed position called the front or head. In implementations the rear is

mostly the last and the front the first element of list. In other words, the most recently

inserted record will be always on the rear (operation enqueue) and only the record on

front can be removed (operation dequeue).

struct queue_header

{

 void *pRecord = nullptr;

 queue *pNext = nullptr;

};

struct queue

{

 queue_header *pFront = nullptr;

 queue_header *pRear = nullptr;

 };

To avoid long iterations store two pointers: to the front and to the rear. Another solution:

implement the queue using a circular list.

In double-ended queue or deque the insertion and removal of records can be performed on the

both ends: on the front as well as on the rear.

Methods for speeding up the sequential search (1)

In sequential search we have to iterate the sequence from the beginning to the end and on each

step compare the key of current record with the given key. When the keys are identical, the

searching stops. If we cannot continue because we have reached the end of sequence, the

searching has failed. Example:

PERSON *pGroup;

const char *pKey = "John Smith";

int i = 0;

for (; i < n; i++)

{

 if (!strcmp(pKey, (pGroup + i)->pName))

 {

 break;

 }

}

if (i == n)

{

 cout << "Failure" << endl;

}

Methods for speeding up the sequential search (2)

The worst case is when the record is missing: we need to interate until the end of sequence. If

we know that the failures will occur rather often, we may first to sort the sequence:

PERSON *pGroup;

const char *pKey = "John Smith";

int i = 0, k;

for (; i < n; i++)

{

 if ((k = strcmp(pKey, (pGroup + i)->pName)) <= 0)

 { // if k < 0, pKey < pName and there is no sense to continue

 // for example we search John from Charles, James, Peter, Winfried

 // if we have already reached Peter we may break off

 break;

 }

}

if (k)

{

 cout << "Failure" << endl;

}

Methods for speeding up the sequential search (3)

According to the Pareto principle (known also as 80/20 rule) roughly 80% of consequences

come from 20% of causes. For searching it means that roughly 80% of queries are about 20%

of records.

Consequently, to speed up the sequential search we may reorder the sequence so that the most

queried records (20% of total) are at the beginning. However, it is cumbersome or even

impossible to extract them.

In self-organizing linked lists the search is organized as follows:

• at the beginning the records are in random order.

• after each successful query the found record is put at the beginning of sequence.

In self-organizing arrays the search is organized as follows:

• at the beginning the records are in random order.

• after each successful query swap the found record with its predecessor.

In both cases after some time the most queried records are located near the beginning.

Skip lists (1)

The records must be sorted. We start moving (red lines) on the upmost level. If we see that

we have already jumped over the searched record, return to the previous record, step down

to the lower level and continue.

Skip lists (2)
The problem here is that what will happen after inserting some new records. To preserve

the original orderly structure we have to do a lot of relocations, actually create a new skip

list. It is clear that such a solution is unsuitable.

Note that:

About a half of records are with one pointer.

About a quarter of records are with two pointers.

………………………………………….

About 1 / 2k of records are with k pointers.

Let us take k = 4. We need a generator of random numbers that returns:

Integer 1 with probability 0.5.

Integer 2 with probability 0.25.

Integer 3 with probability 0.125.

Integer 4 with probability 0.00625.

The generator output determines how many pointers build into the next new record. In this

way a get a skip list that is not absolutely orderly but however, allows faster searching, for

example like this one:

Binary search (1)

Let us have a sorted array with length n, for example 15 25 28 30 32 36 37 58 61 68 75. We

search record with key 58.

First find the record located in the centre. The index of center is n / 2. In this example 11/ 2 = 5

15 25 28 30 32 36 37 58 61 68 75.

If the record in the centre has the required key, we have finished. If not, take the segment

located left (the required key is less than key in the center) or right (the required key is greater

than key in the center) from the center and follow in the same way, i.e. find the center, test it

and if the result is negative, select the left or right segment:

37 58 61 68 75

37 58

If the length of new segment is zero, the search has failed. For example, if we search 60 we

need to select the segment right of 58, but there are no records.

Binary search is recursive but we can also implement it with non-recursive functions. Athough

universal in principle, it is practically applicable only to arrays.

Binary search (2)
PERSON *BinarySearch(PERSON *pGroup, int n, const char *pKey)

{ // recursive binary search function

 if (!pGroup || !n || !pKey)

 {

 return nullptr;

 }

 PERSON *pCenter = pGroup + n / 2; // pointer to ther center

 int i = strcmp(pCenter->pName, pKey);

 if (!i)

 {

 return pCenter;

 }

 else if (i < 0)

 { // right segment

 return BinarySearch(pCenter +1, n % 2 ? n / 2 : n / 2 - 1, pKey);

 }

 else

 { // left segment

 return BinarySearch(pGroup, n / 2, pKey);

 }

}

Binary search (3)
PERSON *BinarySearch(PERSON *pGroup, int n, const char *pKey)

{ // non-recursive binary search function

 if (!pGroup || !n || !pKey) {

 return nullptr;

 }

 for (PERSON *p = pGroup; n > 0;) {

 PERSON *pCenter = p + n / 2;

 int i = strcmp(pCenter->pName, pKey);

 if (!i) {

 return pCenter;

 }

 else if (i < 0) { // right segment

 p = pCenter + 1;

 n = n % 2 ? n / 2 : n / 2 -1;

 }

 else { // left segment

 n /= 2;

 }

 }

 return nullptr;

}

Merge sort (1)

Let us have a linked list of records with keys 87 46 79 75 12 29 64 13 91 95 86 81 21 50.

First create pairs and sort them:

87 46 79 75 12 29 64 13 91 95 86 81 21 50

46 87 75 79 12 29 13 64 91 95 81 86 21 50

From sorted pairs merge sorted groups of four records:

46 75 79 87 12 13 29 64 81 86 91 95 21 50

Next merge sorted groups of eight records:

Merge sort (2)

12 13 29 46 64 75 79 87 21 50 81 86 91 95

At last from two sorted halfs merge the complete sorted list:

Merge sort (3)

Merge sort is ideal for sorting linked lists because

we just need to reset pointers. Additional memory

is not needed. See also:

https://www.geeksforgeeks.org/merge-sort/

https://www.geeksforgeeks.org/merge-sort/

C standard functions for searching and sorting

Binary search from a sorted array:

void *bsearch (const void *pKey, const void *pArray, size_t nRecords, size_t RecordSize,

 int (*pCompare) (const void *, const void *));

Quick sort for array:

void qsort (const void *pArray, size_t nRecords, size_t RecordSize,

 int (*pCompare) (const void *, const void *));

Here:

pKey – pointer to the required key

pArray – pointer to the beginning of array

nRecords – number of members (records) in array

RecordSize – length of one record in bytes

pCompare – pointer to function performing the comparison of keys (will be discussed later)

size_t – actually unsiged int, see https://en.cppreference.com/w/c/types/size_t

Example:

#include "stdlib.h"

int Compare(const void *pKey, const void *pRecord)

{

 return strcmp((const char *)pKey), ((const PERSON *)pRecord)->pName);

}

PERSON *pJohn = bsearch("John Smith", pGroup, nStudents, sizeof(PERSON), Compare);

https://en.cppreference.com/w/c/types/size_t

	Slide 1: Linear data structures (1)
	Slide 2: Linear data structures (2)
	Slide 3: Linear data structures (3)
	Slide 4: Linear data structures (4)
	Slide 5: Linear data structures (5)
	Slide 6: Linear data structures (6)
	Slide 7: Linear data structures (7)
	Slide 8: Linear data structures (8)
	Slide 9: Linear data structures (9)
	Slide 10: Linear data structures (10)
	Slide 11: Linear data structures (11)
	Slide 12: Linear data structures (12)
	Slide 13: Linear data structures (13)
	Slide 14: Linear data structures (14)
	Slide 15: Linear data structures (15)
	Slide 16: Linear data structures (16)
	Slide 17: Linear data structures (17)
	Slide 18: Serialization
	Slide 19: Stack (1)
	Slide 20: Stack (2)
	Slide 21: Queue
	Slide 22: Methods for speeding up the sequential search (1)
	Slide 23: Methods for speeding up the sequential search (2)
	Slide 24: Methods for speeding up the sequential search (3)
	Slide 25: Skip lists (1)
	Slide 26: Skip lists (2)
	Slide 27: Binary search (1)
	Slide 28: Binary search (2)
	Slide 29: Binary search (3)
	Slide 30: Merge sort (1)
	Slide 31: Merge sort (2)
	Slide 32: Merge sort (3)
	Slide 33: C standard functions for searching and sorting

